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Abstract
We propose the vision of a unified visualization platform
that supports the full range of the classic “anytime” and
“anywhere” motto for data analysis: from mobile and on-
the-go usage, through office settings, to collaborative con-
ference rooms and smart environments. Furthermore, such
a platform, in order to be truly unified and universal, would
have to scaffold a complete set of use-cases for visual-
ization and analytics, including exploration, sensemaking,
development, and, eventually presentation and dissemina-
tion. We discuss the design space of this unified platform
and each of the required components in detail. Finally, we
present several existing technologies and research efforts
that may be leveraged to realize this vision.
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Introduction
Data analysis using visualization is performed through the
use of purpose-made applications—just like most computer-
based knowledge work. The choice of a specific applica-



tion for a specific task is based on a combination of per-
sonal preferences, the data and type of task, and the user’s
skills [21]. For visualization and data analytics, the choice
stands between shelf configuration or template-based [11]
applications (e.g., Tableau, Spotfire, and Microsoft PowerBI),
high-level visualization specification grammars (e.g., Vega/-
Lite [31, 32] and Atom [22]), or low-level visualization frame-
works that require programming in a text editor (e.g., D3 [6]
and Raphaël). For example, programming-savvy analysts
may prefer using a low-level visualization framework, while
a less technically-skilled analyst may prefer an application
based on direct manipulation. When users with different
skills or preferences need to collaborate, they, however,
have to make a “collective compromise” and negotiate a
common software denominator [21], as well as develop
strategies for cross-application collaboration. These strate-
gies require significant “mental gymnastics” and additional
effort when copy&pasting content from one application to
another or exporting and importing data back and forth.

Collaboration for visualization [13] is just one of several
cross-cutting concerns that unify all realistic uses of visu-
alization. Another is the activities that users perform using
visualization and visual analytics: programming, tinkering
and crafting, exploring, analyzing, and presenting visualiza-
tions. Yet, most modern visualization software support—at
most—collaboration only in one of these activities. Finally,
the choice of tool or application also dictates the devices
applicable for a given task: e.g., desktop, mobile, pen-
based, tangible, and pen-based ones. Analytics applica-
tions developed for desktop computers are impossible to
use on mobile platforms, limiting migration between mobile
and stationary devices—what Jokela et al. [15] call sequen-
tial use. Again, the parallel use of devices [15] involving
multiple heterogeneous devices (e.g., personal devices and

large displays) as well as potentially multiple users is gener-
ally poorly supported by contemporary software.

In an ideal world all these three cross-cutting aspects of
data analysis using visualization—(i) collaboration, (ii) di-
verse activities, and (iii) heterogeneous devices—would
be supported by the same visualization and visual analyt-
ics platform, and transitions between them would be both
transparent and effortless. Embodied by Mark Weiser’s
classic “anytime” and “anywhere” moniker for ubiquitous
computing [35], we think of this as an ubiquitous paradigm
for analytics, or ubilytics [4, 9]. To achieve this paradigm,
the implication is that the visual analysis environment needs
to accommodate both single and multiple users, a diverse
and heterogeneous set of input and output devices, and the
full spectrum of activities, from exploration and analysis to
dissemination and presentation [33]. This includes both the
use of off-the-shelf visual and analytics components, which
is most practical in a mobile setting where interaction is lim-
ited, as well as the ability to modify or even develop new
visualizations from scratch within the same system.

We propose the notion of a unified visualization platform
that supports both a complete range of physical usage set-
tings as well as a complete set of practical use cases where
people may want to perform cooperative data analysis with-
out sacrificing their skills due to a collective compromise.
This platform is based on a design space that incorporates
factors such as collaboration, literate computing, input and
output devices, and component models, as well as activities
such as design, development, analysis, and presentation.
The intention of this unified visualization platform is to pro-
vide an exemplar of what an ideal platform would look like,
essentially outlining a vision for future research in this area.
We take the first steps on this path by identifying a host of



current tools and technologies that we believe could con-
tribute to realizing this grand vision.

Motivating Scenario
Ellis is a data scientist working in the real estate investment
branch of a large North American coffeehouse chain. His
team, the store location team, decides where to buy prop-
erty and open new stores. This involves analyzing data on
competition, demography, safety, real estate prices, etc. of a
given city or neighborhood. Ellis and his colleagues develop
interactive visualizations where the interdisciplinary store
location team can experiment with “what if” scenarios. The
team comprises data scientists as well as financial analysts
and economists. Team members collaborate synchronously
in meetings and asynchronously in-between them. Some
team members are located in different time zones across
the country, which is why—among co-located meetings—
the team regularly collaborates remotely. The co-located
team will interact with visualization components developed
by the data scientists across both personal devices and
large shared displays. A typical scenario of use will revolve
around a large display with a map with various visualiza-
tions of potentials for sales and growth—visualizations that
can be configured live from the personal devices of the
participants. At any time a visualization component can
be reconfigured or even reprogrammed if the need arises.
At their desks, analysts can combine datasets and visual-
ization components in a direct manipulation fashion. The
visualization components Ellis and his colleagues have
developed are accessible on mobile devices as well. This
enables field scouting, where an analyst can quickly get
an overview of the suitability of a neighborhood or particu-
lar address, and explore “what if” scenarios directly on the
phone in the field.

Background
Supporting data analytics anywhere, anytime [9] can help
realize workflows described in the motivating scenario.
However, this is not exactly straightforward. In fact, going
beyond the traditional analytical activities on a personal
computer into large display environments that support
collaboration as well as mobile visualization is ongoing.
Among recent work, VisPorter [7] enables visual exploration
between large displays and smartphones in a co-located
space. BodyLenses [17] and Proxemic lenses [1] explore
full-body interaction models for users working in front of a
wall-sized display. GraSp [16] enhances such interactions
with a handheld device allowing graph analysts explore the
data with more flexible workflows in the large display envi-
ronment. Finally, spatial analytic interfaces [10] introduce
the notion of accessing visualizations in any target environ-
ment with the help of augmented reality. These advances
pave the way for our Unified Visualization Platform as it
needs to bring together the interaction models and visu-
alization tasks tackled in these background works.

Early collaborative visualization platforms (e.g., Sense.us [12]
and ManyEyes [34]) exemplified asynchronous distributed
collaboration in visual analysis. Munin [4] presents a peer-
to-peer platform for interaction management and user in-
terface distribution across devices in a co-located environ-
ment. Going beyond that, PolyChrome [2] supports cross-
device visualizations over the web to utilize devices of dif-
ferent modalities together or transform visual interfaces to
work on any device. Panelrama [36] supports distribution
of webpages across devices, thus, enabling ubiquity for
general web applications. However, these frameworks still
showcase early steps towards reaching our vision as they
rely on the end-user application developers to implement
data models, create visualization techniques, make them
responsive to devices, and even support collaboration.



A Unified Visualization Platform
In the motivating scenario, we see analysts performing data
analysis while collaborating with others to develop their in-
sights and working across devices. We, therefore, identify
three core aspects of a unified visualization platform (UVP):
collaboration, activities, and devices. First, a UVP should
support the different types of collaboration and seamless
transitions between them: remote vs. co-located and asyn-
chronous vs. synchronous collaboration [8]. Second, a UVP
should support the various activities involved in visualiza-
tion work and the seamless transitions between them: de-
velopment, exploration, analysis and sensemaking, and
presentation [25]. And finally, a UVP should allow users to
span and migrate their work across heterogeneous devices.

Figure 1: The conceptual model
for a unified visualization platform.
We currently focus on three core
aspects—activity, collaboration,
and devices/platforms—to outline
the design space. There are also
some secondary aspects such as
data, application, and domain that
can influence the envisioned
visualization platform.

Activities
The activities represent the use context, and thus convey
the support expected from the platform.

• Exploration: investigative data analysis where the
hypotheses are not initially known.

• Sensemaking: collecting actionable insights.
• Development: creating and modifying visualizations

and analytical components; ranges from drag-and-
drop or visual programming to actual programming.

• Presentation and dissemination: communicating the
results from an analysis [33].

Activities exist on a spectrum. On one end, development
and exploration involve creation and interaction with visu-
alizations to identify patterns, trends, and outliers. On the
other, sensemaking supports much more including hypothe-
ses testing and management of insights developed, while
presentation brings them to the target audience. On this
scale, other activities also exist such as learning and edu-
cation. Ideally, new visualizations that emerge from devel-
opment during learning and education seamlessly transition

into the tool portfolio of an analyst such that their tools be-
come a tangible manifestation of their expertise. These cus-
tom tools also allow analysts to develop their own analyses
strategies without having them dictated by a system with
a pre-defined toolset. Therefore, different users can have
their own custom tools and strategies for data analyses.

Collaboration
The activities are not performed by just a single user. Differ-
ent types of collaboration require specific features.

• Time: whether the collaboration happens at the same
(synchronous) or different (asynchronous) times.

• Space: whether the collaboration happens in the
same (co-located) or different (distributed) space.

• Role: the unique capabilities, expertise, and permis-
sions of participating collaborators.

When collaboration happens asynchronously in distributed
settings—the most common form of collaboration in visual
analysis [12, 13]—annotations and data coverage represen-
tations [5, 28] help the analytical activity. In contrast, syn-
chronous collaborations require real-time communication
and deixis [14] to coordinate multiple users.

Devices and Platform
The target platforms and their input and output modalities
play an important role in the analytical activity.

• Mobile devices: small, handheld devices such as
smartwatches, mobile phones, and tablets.

• Personal computers: laptop or desktop computers,
equipped with a mouse and keyboard, or touch input.

• Large displays: large screens such as wall-mounted,
wall-size, or tabletop displays.

• Input sensing: depth cameras, full-body sensing, mo-
tion capture, etc.



The differences with output modalities, display sizes of
small handheld devices vs. large displays, calls for respon-
siveness in the user interface elements. Furthermore, the
UI should also adapt to the input modalities of the target
devices to seamlessly support analytical activities across
devices as seen in our motivating scenario.

Inspirational Technologies
Frameworks such as D3 [6], Vega [32], and Vega-Lite [31]
have gained popularity for developing visualizations. They
offer flexible ways of expressing interactive visualizations
for a programming-savvy user that can be deployed as a
webpage to make it accessible on all devices that have a
web browser. Shelf configuration [11] applications such as
Tableau1 or Polestar2 allow for drag-and-drop based cre-
ation of visualizations without the need for programming.
Lyra [30] builds on D3 and allows users to create custom
visualizations using drag-and-drop. For storytelling, Ellip-
sis [29] takes D3 code and unravels parameters to allow
users create scenes and tell a visual story.

Figure 2: An example
codestrate [26] for development of
a web game, where the code is
organized in blocks enriched with
rich text and media (literate
programming). The Codestrates
system [26] supports real-time
collaboration in creating web
applications, enhances
reprogrammability, and bridges the
gap between development and use
of web applications.

Interactive notebooks such as Jupyter Notebook3 [24], Ob-
servable Notebook4, or Codestrates [26] (Figure 2) bridge
the gap between development and use of software. These
applications leverage the literate computing paradigm for
reprogrammable interactive narratives [19]. In these note-
books, text and media such as images, audio, and video
can be interleaved with executable code in a modular fash-
ion, to support re-usability in data analytics. Observable is
specifically designed to be used with visualization frame-
works such as D3, and allows users to tinker with code to
visualize data, and share the visualizations with others.

1https://www.tableau.com/
2http://vega.github.io/polestar/
3http://jupyter.org
4http://observablehq.com

Real-time and concurrent text editing has been a vital as-
pect for synchronous writing, and it has been widely adopted
by a large user base (e.g., Google Docs). Only recently, this
type of collaboration found its way into other types of “mak-
ing together” such as programming (e.g., Codestrates [26]),
data analysis (e.g., Colaboratory5), or user interface proto-
typing (e.g., Figma6). A different aspect of collaboration is
“exploring together” where users work on the same artifact
in a WYSIWIS7 style. Visualization tools like Sense.us [12]
or ManyEyes [34] showcase ”exploring together” through
view sharing, annotation, and social navigation [27].

Cross-device interaction has grown to be a popular re-
search area in human-computer interaction. VisPorter [7]
is a visual analytics system supporting co-located group
activity through large shared displays and handheld per-
sonal devices, and cross-device interactions for sharing
data across them. VisTiles [20] (Figure 3) is a conceptual
framework that proposes multi-device interactions to coordi-
nate visualization views across small-screen devices (e.g.,
smartphones and tablets) for visual data exploration. Pan-
elrama [36] demonstrates a component based approach
to distributing user interface elements across multiple het-
erogeneous devices using integer programming. AdaM [23]
solves the problem of allocating components to devices with
combinatorial optimization and accounts for device capabil-
ities, user roles, preferences, and access rights. Visfer [3]
connects devices merely using QR-codes captured by a
handheld device from a large display.

Finally, Munin [4] and PolyChrome [2] (Fig. 4) provide shared
event and device management for ubilytics. They support
application development for many collaboration styles [8].

5http://colab.research.google.com
6https://www.figma.com/
7What You See Is What I See

https://www.tableau.com/
http://vega.github.io/polestar/
http://jupyter.org
http://observablehq.com
http://colab.research.google.com
https://www.figma.com/


Agenda for Ubilytics Research

Figure 3: Two example
configurations for combining
small-screen devices for visual
exploration from VisTiles [20].

Figure 4: Current Ubilytics
frameworks such as Munin [4] and
PolyChrome [2] provide the
infrastructure for managing input
events and display space across
devices in a visual analytics
environment. However, as
middleware they rely on end-user
application developers to actually
create the visualization interface
and define workflows across the
devices for multiple users.

A truly universal platform for ubiquitous analytics cannot
be built by a single vendor, team, or researcher. In fact, the
definition of a universal platform is that it should support
integration across any usage, user, or setting. The scope of
the existing research and industry projects we draw upon
to realize the motivating scenarios in the beginning of the
paper should be evidence enough that multiple efforts are
required across both academics and practitioners.

For this reason, we believe that an important endeavor in
the quest for a universal visualization platform should be
the development of a component model for visualization. In
software engineering, a component is a module, service,
or resource that encapsulates a set of related functions
and state. Only by formalizing the separation of concerns
between different parts of the visualization platform using
a well-defined software interface would it be possible to
realize massive software engineering undertakings such as
the universal visualization platform proposed in this paper.

We believe that the literate computing paradigm used in
Jupyter Notebook, Observable Notebook and Codestrates
has a yet untapped potential for supporting our agenda.
Codestrates has demonstrated how literate computing can
scale from data exploration to application development, and
through the underlying Webstrates platform support col-
laboration both in development and use of software and
applications. The web platform used by Codestrates and
Observable, allows for unprecedented combination and
remixing of existing tools and frameworks including the
most popular visualization frameworks. Combining a com-
ponent based model with a literate computing paradigm
would allow novice users to remix components, and expert
users to develop or reprogram components in the same en-
vironment and collaboratively. We imagine bite-sized com-

ponents that can easily be distributed to mobile devices, or
shown in combination on a large display, e.g. automated in
a fashion as proposed with AdAM [23].

Conclusion and Future Work
We have proposed a unified visualization platform (UVP)
to support the full range of activities, devices and settings,
and modes of collaboration necessary for seamless interac-
tive data analysis. The goal is to define a grand vision that
can serve as an exemplar for future work. Furthermore, we
have also identified inspirational technologies that partially
support this vision, as well as a future research agenda.

The MobileVis workshop will allow us to present the vision
of a unified visualization platform to researchers and prac-
titioners, discuss challenges and benefits, and brainstorm
solutions for realizing it.

In our future work, we will begin to actually make inroads to-
wards realizing this vision. While we have so far in this work
identified possible technologies and research efforts that
can be leveraged to do this, our goal is to actually start im-
plementing some of these ideas in the near future. Our plan
is to primarily use the Webstrates [18] and Codestrates [26]
platforms as starting points, working towards a system that
we are tentatively calling “Vistrates.”
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